

PRODUCT CATALOGUE

www.biometricdental.com

CONTENTS

IMPLANT SYSTEM	2
FIXTURES	9
HEALING ABUTMENTS	19
INDIVIDUAL HEALING ABUTMENTS	23
CEMENTED ABUTMENTS	25
ANGLED ABUTMENTS	29
IMPRESSION COPING	33
CAD-CAM	37
INSTRUMENTS	41

THE CONCEPT

- Simple and universal fixture geometry
- Sharp conical connection for strong fixation, bone overgrowth and better force distribution; no micro gap and micro movement
- SLA surface treatment different roughness in platform area
- Self tapping and drilling design aggressive in soft bone and gentle in cortical areas, force direction to apical part of implant
- Simple universal kit and less instruments
- Designed for tissue care and aesthetic results
- Compatible with CAD CAM systems and prosthetic solutions

BIOMETRIC INSTRUMENT KIT

Introduction

DESIGN

The Biometric instrument kit is designed to keep the surgical and prosthetic instrument set as simple as possible and to prevent mistakes during implant surgery or maintenance. Biometric's philosophy is to protect the environment and act responsibly.

MATERIALS

High-quality materials have been used to create a long-lasting and durable product. An aluminum (AL6061) metal case and slide cover are able to be placed into the autoclave thousands of times and are suitable for heavy use. All materials are recyclable, and no plastic has been used in our product.

FULLY AUTOCLAVABLE

The shape and size of the Biometric surgical kit are designed to fit any kind of autoclave. As many as two or three kits, including surgical instruments, can be placed into the autoclave at once.

BIOMETRIC INSTRUMENT KIT Contents

SIDECUT DRILL

The sharp TrimRite® stainless steel Lindemann drill (a sidecut drill) is useful as a pointing instrument. It also has a side-cut effect to correct implant angulation.

DRILL EXTENSION

The drill extension has a unique design. It's extremely safe to use – a perfect fit with all other surgical instruments without a risk of losing any parts during critical surgical steps. The instrument is used in complicated situations where more length is needed. The drill extension is also useful for implant insertion with an HS fixture driver.

DIRECTION INDICATOR

Direction indicators are useful for checking single implant angulation during preparation. This step is important for screw-fixed prosthodontics or use of a CAD-CAM TI-Base. Indicators are also essential for paralleling multiple implants.

FINAL DRILLS

High-quality and long lasting TrimRite® stainless steel final drills are color coded and laser marked. A simple and effective design helps to avoid over-heating of the bone and has several cutting zones to prevent vibration during preparation - no need for internal cooling. Working speed is a max of 2000 rpm. Attention! It is highly recommended to replace drills after 25-30 surgeries to avoid any heat damage!

STOPPERS

Stoppers are useful for safe surgery. No need to focus on laser marks, and no need to calculate depth. Stoppers are designed for the specific inplant length $+\ 1$ mm for correct implant positioning (1 mm subcrestal).

BIOMETRIC INSTRUMENT KIT Contents

TAP INSTRUMENTS

Tap instruments are designed both for bone condensing and preparation of delicate cortical bone. Tapping helps to avoid overcondensing of the strong bone, which may lead to bone loss and implant failure.

HEX DRIVERS

The 1.2 HEX driver is used to match both healing abutments and final prosthetic components. The 1.7 HEX driver and 0.9 HEX driver are used to fix spacers and membrane screws.

The abutment remover is useful for opening already tightened abutments. The abutment remover is also recommended for use in dental labs. The abutment HEX is a delicate structure and can be distorted using inappropriate devices.

FIXTURE DRIVERS

Fixture drivers are designed to fit perfectly into an implant's internal thread slot. Be careful with insertion - all force over 50-60 Ncm may lead to distortion of internal implant structures and can cause failure.

The torque driver is a universal instrument for HEX drivers used in surgery or prosthetic procedures.

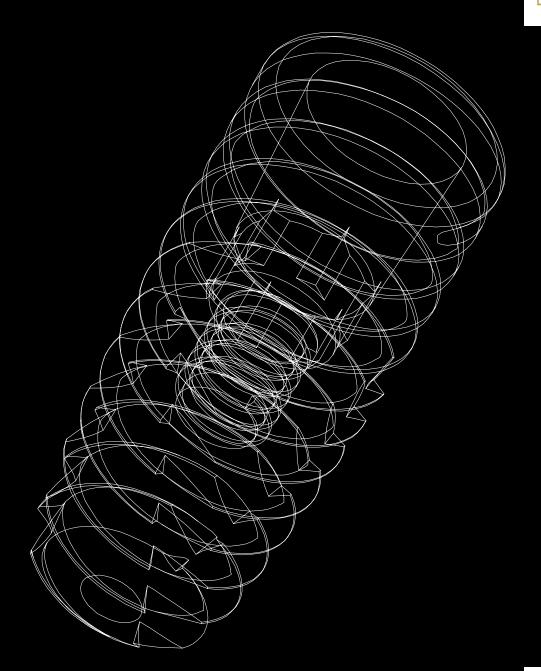
DEPTH GAUGE

The depth gauge has laser marked tip and depth marks. All measurements have been calculated with the principle of +1 mm to avoid incorrect implant positioning.

Insertion torque

Submerged approach: 10-20 Ncm.

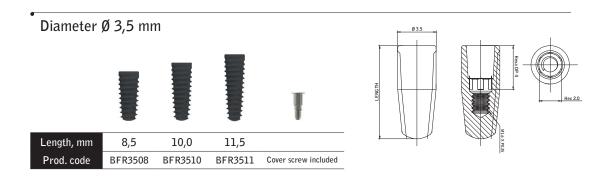
Nonsubmerged approach: 20-30 Ncm.

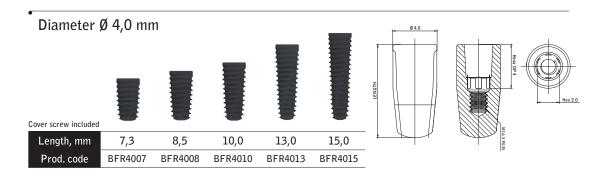

Immediate loading: 30-40 Ncm.

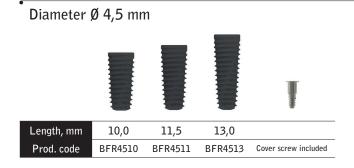
Do no exceed 40 Ncm.

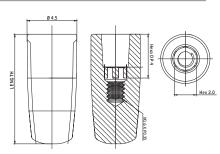
BIOMETRIC PRODUCT CHART

Fixture	Неа	ling	Impression coping	Lab analog	Abutment	CAD-	CAM
	W	T					
Fixture	Spacer	Healing abutment	Pick-up impression	Regular lab analog	Rescue abutment	Sirona-Cerec Ti base straight	CAD-CAM scannable healing abutment
V	T	(F					
Cover screw	Membrane fixing screw / Access screw	Individual healing abutment	Transfer impression		Cemented abutment	Sirona-Cerec Ti base angled	CAD-CAM lab analog
					Angled abutment		

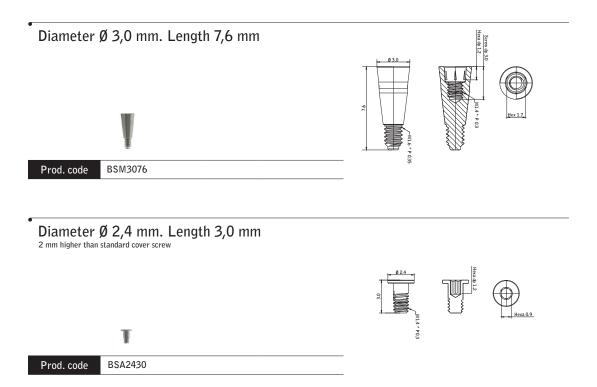


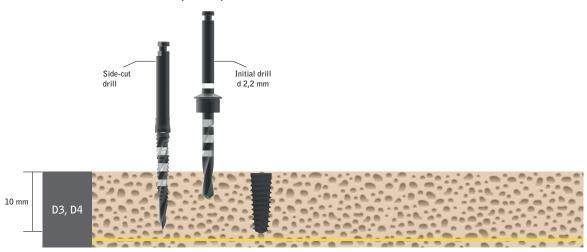

9

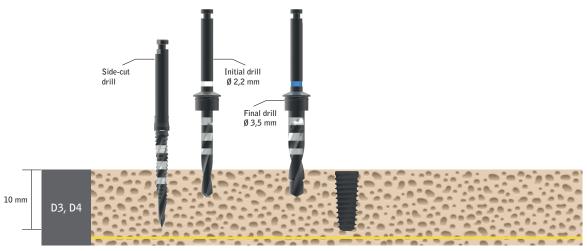

BIOMETRIC FIXTURE


Regular platform

* Material: Titanium Gr4

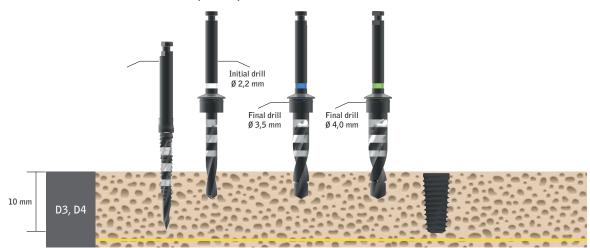



MEMBRANE FIXING SCREW WITH SPACER / ACCESS SCREW


Biometric fixture drilling sequence

Bone structure D3 and D4

Biometric fixture \emptyset 3,5 mm, bone structure D3 and D4


Biometric fixture Ø 4,0 mm, bone structure D3 and D4

Biometric fixture drilling sequence

Bone structure D3 and D4

Biometric fixture Ø Ø 4,5 mm, bone structure D3 and D4

NB

All depth-marks on instruments include +1 mm for correct implant positioning.

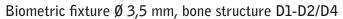
NB

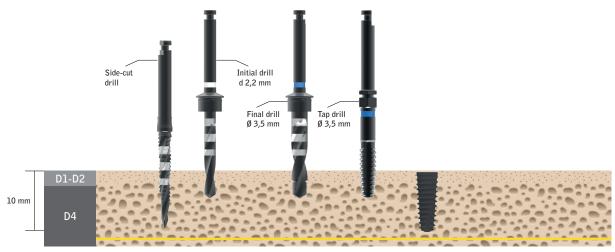
Use sharp probe or side cut drill for direction marking and bone sounding.

NB

Drill only 1/3 length with initial Ø 2,2 mm drill if necessary.

NB

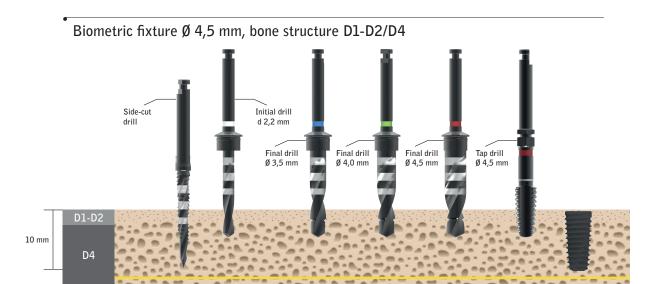

Position implant at least 1 mm deeper from the crest.


TIP

Use \emptyset 3,5 mm tap drill for bone condensing and insert \emptyset 4,5 mm implant to avoid bone damage and spinning effect.

Biometric fixture drilling sequence

Bone structure D1-D2/D4



Biometric fixture Ø 4,0 mm, bone structure D1-D2/D4

Biometric fixture drilling sequence

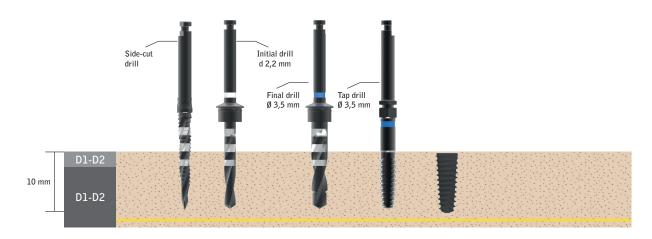
Bone structure D1-D2/D4

NB

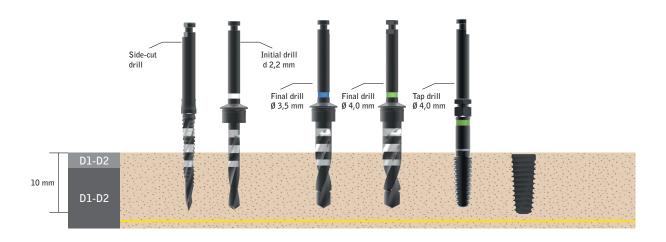
All depth-marks on instruments include +1 mm for correct implant positioning.

NB

Only cortical drilling, only cortical pre tap.

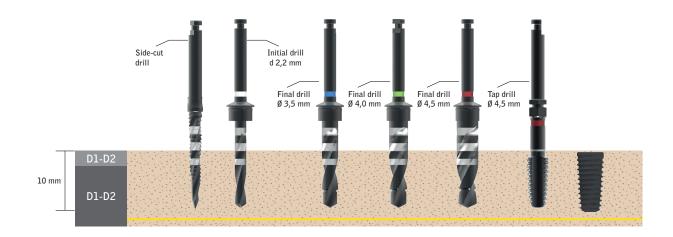

NB

Position implant at least 1 mm deeper from the crest.


Biometric fixture drilling sequence

Bone structure D1-D2

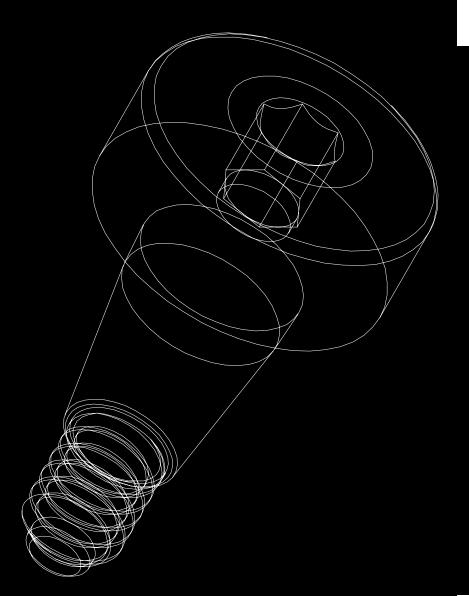
Biometric fixture \emptyset 3,5 mm, bone structure D1-D2


Biometric fixture Ø 4,0 mm, bone structure D1-D2

Biometric fixture drilling sequence

Bone structure D1-D2/D4

Biometric fixture Ø 4,5 mm, bone structure D1-D2

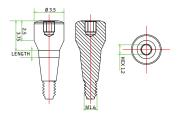


NB

All depth-marks on instruments include +1 mm for correct implant positioning.

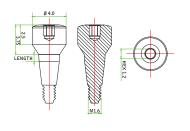
NB

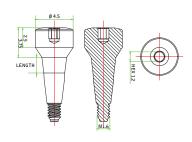
Position implant at least 1 mm deeper from the crest.


HEALING ABUTMENT

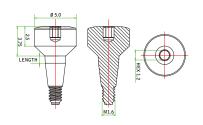
Temporary restorations for contouring of the soft tissue

* Tightening torque 8~10 Ncm


Diameter Ø 3,5 mm


Diameter Ø 4,0 mm

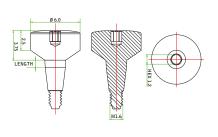
Diameter Ø 4,5 mm


HEALING ABUTMENT

Temporary restorations for contouring of the soft tissue

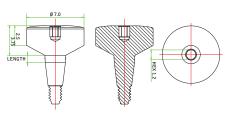
* Tightening torque 8~10 Ncm

Diameter Ø 5,0 mm

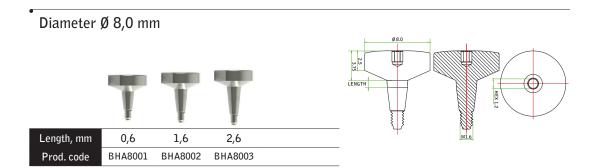


Diameter Ø 6,0 mm

Prod. code


Prod. code

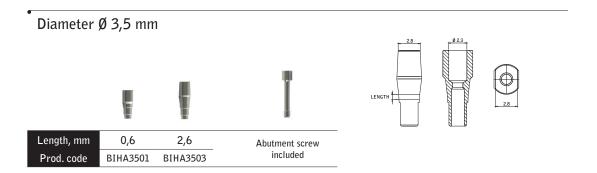
Diameter Ø 7,0 mm

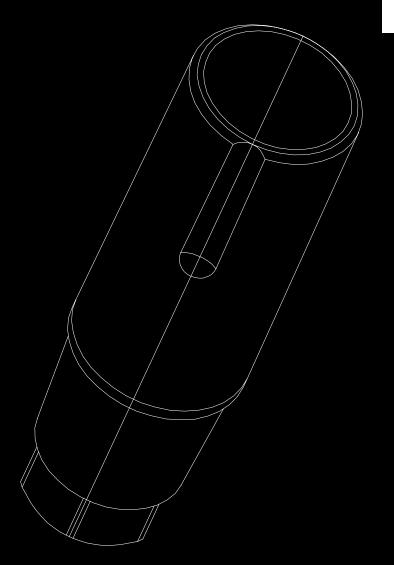


HEALING ABUTMENT

Temporary restorations for contouring of the soft tissue

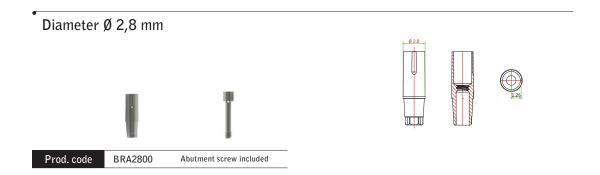
* Tightening torque 8~10 Ncm




TIP

Wide healing abutment helps to create better soft tissue contour after tooth extraction or closing fresh extraction socket after implantation.

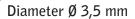
INDIVIDUAL HEALING ABUTMENT



RESCUE ABUTMENT

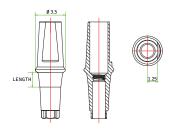
Cementable on screw-retained abutment for single tooth and bridges

* Customisable by grinding * Tightening torque 30 Ncm


TIP

In case of bone remodelling or reduction, rescue abutment helps to place the crown margin directly on implant neck.

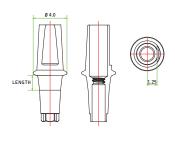
CEMENTED ABUTMENT


Cementable on screw-retained abutment for single tooth and bridges

* Customisable by grinding * Tightening torque 30 Ncm

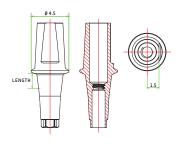
BCA3503

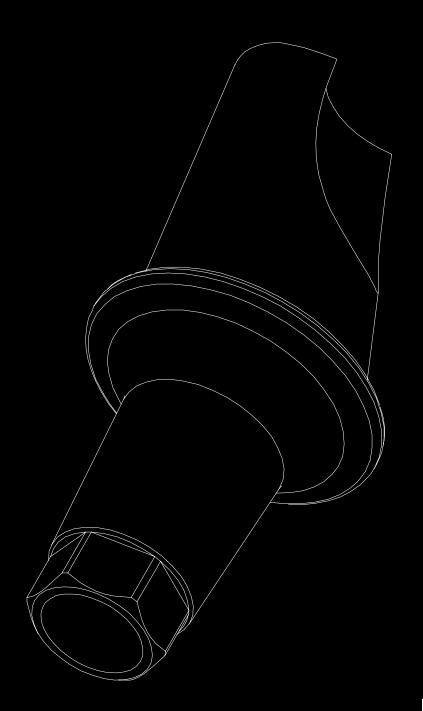
Diameter Ø 4,0 mm


BCA3501

BCA3502

Length, mm


Prod. code



Diameter Ø 4,5 mm

ANGLED ABUTMENT

Cementable on screw-retained abutment for single tooth and bridges

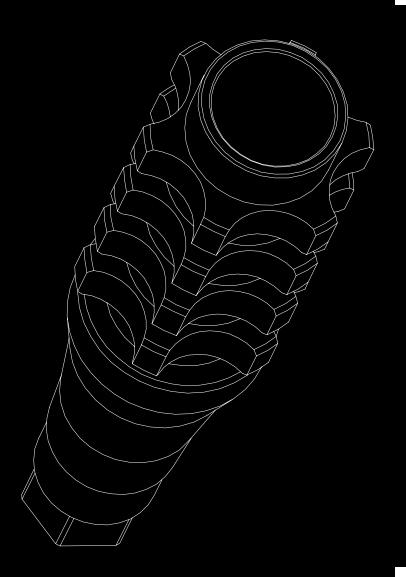
* Abutment screw included * Tightening torque 30 Ncm

Diameter Ø 3,5 mm. Angle 15°

Diameter Ø 3,5 mm. Angle 25°

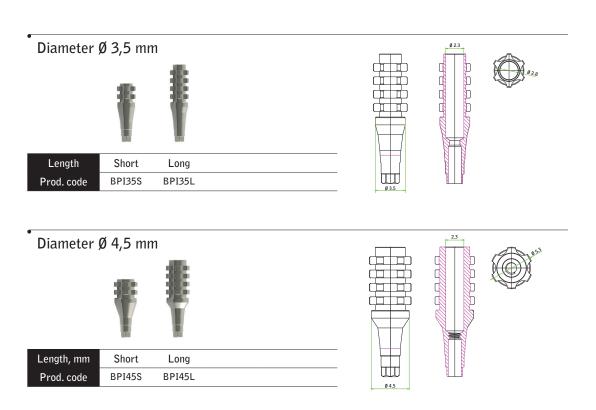
ANGLED ABUTMENT

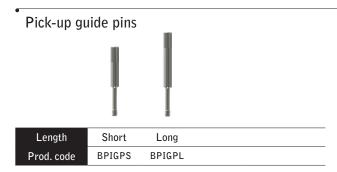
Cementable on screw-retained abutment for single tooth and bridges


* Abutment screw included * Tightening torque 30 Ncm

Diameter Ø 4,5 mm. Angle 15°

Diameter Ø 4,5 mm. Angle 25°





PICK-UP IMPRESSION

Pick-up impression coping

* Pick-up guide pin included * Tightening torque 8~10 Ncm

TRANSFER IMPRESSION

Transfer impression coping

* Transfer guide pin included * Tightening torque 8~10 Ncm

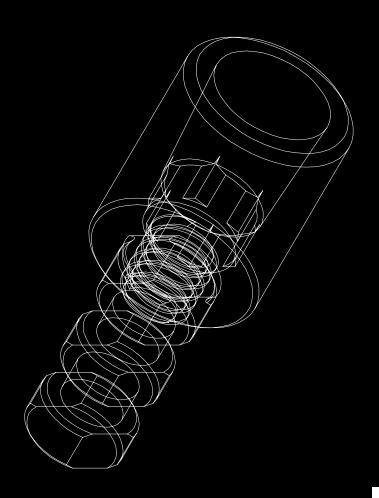
Diameter Ø 3,5 mm

Length	Short	Long
Prod. code	BTI35S	BTI35L

Diameter Ø 4,5 mm

Length, mm	Short	Long	
Prod. code	BTI45S	BTI45L	

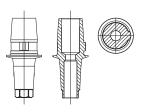
Transfer guide pins



Length	Short	Long	
Prod. code	BTIGPS	BTIGPL	

REGULAR LAB ANALOG

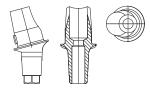
Not suitable for 3D printed models



SIRONA-CEREC TI BASE STRAIGHT

* Fixing screw & Sirona-Cerec scan body included

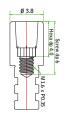
Diameter Ø 4,3 mm

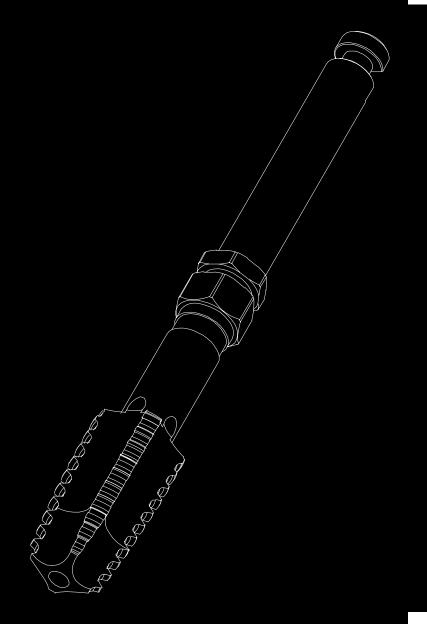


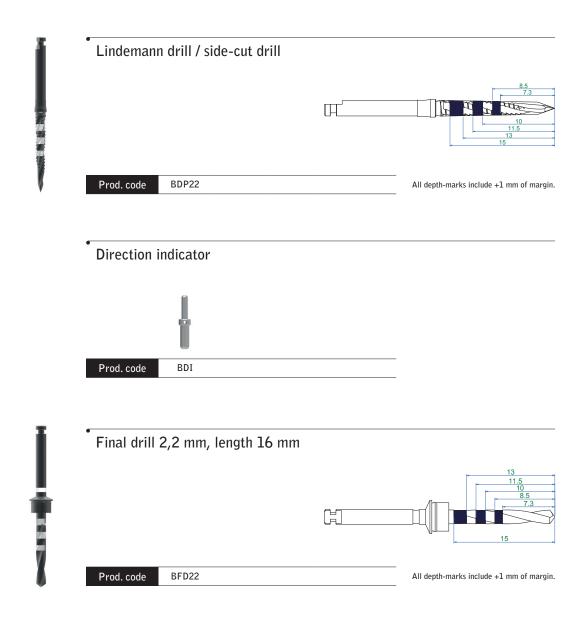
SIRONA-CEREC TI BASE ANGLED

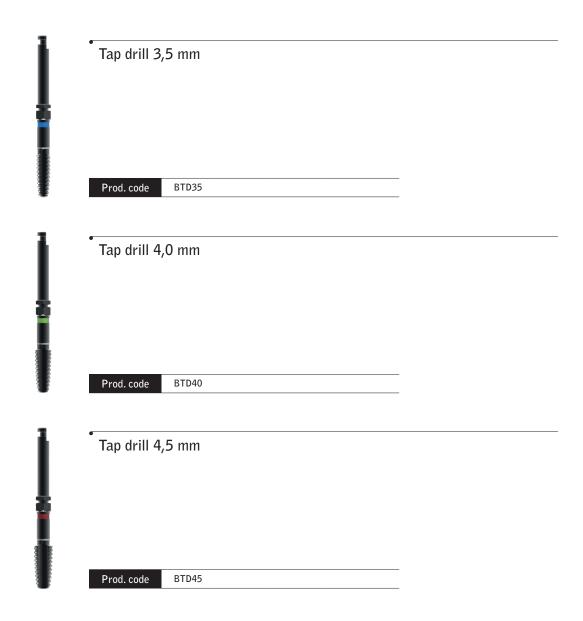
* Fixing screw & Sirona-Cerec scan body included

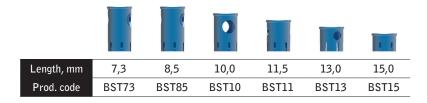
Diameter Ø 4,3 mm. Angle 15°


SCAN BODYScannable healing abutment


CAD-CAM LAB ANALOG


For 3D-printed models

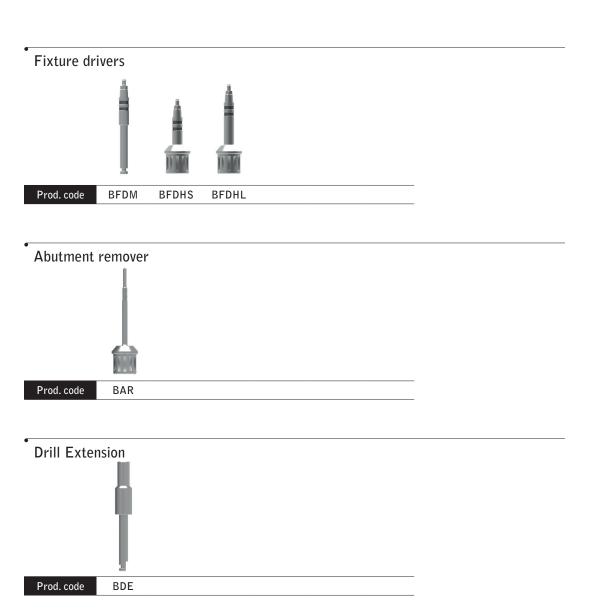



Tap adaptor

Prod. code

BTDA

Stoppers



HEX drivers

 HEX
 0,9
 1,2 short
 1,2 long
 1,7

 Prod. code
 BHD09
 BHD12S
 BHD12L
 BHD17

Depth gauge

Torque wrench

Prod. code BTW

GET IN TOUCH

Biometric

Tallinn, Estonia

www.biometricdental.com

www.biometricdental.com